https://www.ephjournal.com/index.php/ms/issue/feed EPH - International Journal of Mathematics and Statistics 2021-12-30T15:00:50+00:00 Naveen Malik editor@ephjournal.org Open Journal Systems <p><strong><span id="cell-5-name" class="gridCellContainer"><span class="label">EPH - International Journal of Mathematics and Statistics (ISSN: 2208-2212)&nbsp;</span></span></strong> publishes a wide range of high quality research articles in the field (but not limited to) given below: mathematics, applied mathematics, applied commutative algebra and algebraic geometry, mathematical biology, physics and engineering, theoretical bioinformatics, experimental mathematics, theoretical computer science, numerical computation etc. <br><span style="font-size: 1.5em;"><strong> <span style="text-shadow: #ff6600 0px 0px 3px;">Current Impact Factor: 2.387</span></strong></span></p> https://www.ephjournal.com/index.php/ms/article/view/1847 Likelihood Inference for Discrete Weibull Data with Left Truncation and Right Censoring 2021-12-12T09:15:44+00:00 Chaobing He chaobing5@163.com <p><span class="fontstyle0">The discrete Weibull distribution is a very popular distribution for modeling discrete lifetime data, and it is obtained by discretizing Weibull distribution. Left truncation and right censoring are often observed in lifetime data. Here, the EM algorithm is applied to estimate the model parameters of the discrete Weibull distribution fitted to data containing left truncation and right censoring. The maximization part of the EM algorithm is carried out using the ECM algorithm. The discrete Weibull distribution is also fitted using the Newton-Raphson(NR) method. The asymptotic variance-covariance matrix of the MLEs under the EM framework is obtained through the missing information principle, and asymptotic confidence intervals for the parameters are then constructed.</span> </p> 2021-12-15T00:00:00+00:00 Copyright (c) 2021 EPH - International Journal of Mathematics and Statistics (ISSN: 2208-2212) https://www.ephjournal.com/index.php/ms/article/view/1865 Parametrization of algebraic points of low degrees on the affine curve y^{2}= x^{5}+144^{2} 2021-12-30T15:00:50+00:00 El Hadji SOW elpythasow@yahoo.fr Pape Modou SARR p.sarr597@zig.univ.sn OUMAR SALL osall@univ-zig.sn <pre style="-qt-block-indent: 0; text-indent: 0px; margin: 0px;"><span style="color: #000000;">In this </span><span style="text-decoration: underline; color: #000000;">work</span><span style="color: #000000;">, </span><span style="text-decoration: underline; color: #000000;">we</span> <span style="text-decoration: underline; color: #000000;">determine</span><span style="color: #000000;"> a </span><span style="text-decoration: underline; color: #000000;">parametrization</span> <span style="text-decoration: underline; color: #000000;">of</span> <span style="text-decoration: underline; color: #000000;">algebraic</span><span style="color: #000000;"> points </span><span style="text-decoration: underline; color: #000000;">of</span><span style="color: #000000;"> degrees </span><span style="text-decoration: underline; color: #000000;">at</span> <span style="text-decoration: underline; color: #000000;">most</span> <span style="color: #008000;">3</span> <span style="text-decoration: underline; color: #000000;">over</span> <span style="color: #008000;">Q</span><span style="color: #000000;"> on curve <br></span><span style="color: #008000;">C</span> <span style="text-decoration: underline; color: #000000;">of</span><span style="color: #000000;"> affine equation </span><span style="color: #008000;">y^{2}= x^{5}+20736</span><span style="color: #000000;">. </span><span style="text-decoration: underline; color: #000000;">This</span> <span style="text-decoration: underline; color: #000000;">result</span> <span style="text-decoration: underline; color: #000000;">extends</span><span style="color: #000000;"> a </span><span style="text-decoration: underline; color: #000000;">result</span> <span style="text-decoration: underline; color: #000000;">of</span><span style="color: #000000;"> S. </span><span style="text-decoration: underline; color: #000000;">Siksek</span><span style="color: #000000;"> and M. </span><span style="text-decoration: underline; color: #000000;">Stoll</span> <span style="text-decoration: underline; color: #000000;">who</span> <span style="text-decoration: underline; color: #000000;">described</span><span style="color: #000000;"> <br>in </span><span style="color: #008000;">[ 4] </span> <span style="text-decoration: underline; color: #000000;">the</span><span style="color: #000000;"> set </span><span style="text-decoration: underline; color: #000000;">of</span> <span style="color: #008000;">Q</span><span style="color: #000000;">-rational points on this curve.</span></pre> 2021-12-30T00:00:00+00:00 Copyright (c) 2021 EPH - International Journal of Mathematics and Statistics (ISSN: 2208-2212)