SUM GEOMETRIC ARITHMETIC MEANS ENERGY OF GRAPHS

Authors

  • MUAAMAR MOHSEN MOHSEN Department of Mathematics, Faculty of Eduction and Science, Albaydha University, Yemen
  • SULTAN SENAN MAHDE Department of Mathematics, Faculty of Eduction and Science, Albaydha University, Yemen

DOI:

https://doi.org/10.53555/ephms.v8i1.1889

Keywords:

Sum geometric arithmetic means matrix, the eigenvalues of sum geometric arithmetic means of a graph, sum geometric arithmetic means energy of a graph G

Abstract

In this paper, we introduce the concept of sum geometric arithmetic means energy of a graph tt, denoted by ESGAM (tt) and compute sum geometric arithmetic means energy ESGAM (tt) of few families  of graphs.   Also,  we  study some properties   of the eigenvalues of sum geometric arithmetic means of a graph. and we obtain some coefficient of the characteristic polynomial of sum geometric arithmetic means of a graph. Further, we establish the bounds for sum geometric arithmetic means   energy.

Downloads

Download data is not yet available.

References

R. Balakrishnan, The energy of a graph, Lin. Alg. Applic., 387 (2004) 287{295.

K. Balasubramania, The use of Frame’s method for the characteristic polynomial of chemical graphs,

Theoret. Chim. Acta (Berl.), 65 (1984), 49-58.

L. Beineke and R. Wilson, Topics in Topological Graph Theory, Cambridge University Press, New

York, 2009.

A. Brouwer and W. Haemers, Spectra of Graphs, Springer, Amsterdam, 2011.

K. C. Das, I. Gutman, A. S. C¸ evik, and B. Zhou, On Laplacian energy, MATCH Commun. Math.

Comput. Chem., 70 (2) (2013), 689{696.

J. Gross and J. Yellen, Handbook of Graph Theory, Disc. Math. Applic., CRC press, London, 2003.

X. Guo and Y. Gao Arithmetic-geometric spectral radius and energy of graphs, MATCH Commun.

Math. Comput. Chem., 83 (2020) 651-660.

R. Gu, F. Huang and X. Li, General Randic´ matrix and general Randic´ energ, Trans. Comb., 3 ( 3)

(2014), 21-33.

I. Gutman, The energy of a graph: old and new results, Alg. Combin. Applic., Springer-Verlag, Berlin,

, 196{211.

I. Gutman and B. Zhou, Laplacian energy of a graph, Lin. Alg. Appl., 414 ( 2006), 29{37.

I. Gutman, S. Z. Firoozabadi, J.A. Pe~na and J. Rada, On the energy of regular graphs, Match Commun.

Math. Comput. Chem., 57 (2007), 435{442.

I. Gutman, X. Li and J. Zhang, Graph energy, Analysis of Complex Networks. From Biology to

Linguistics, Wiley-VCH, Weinheim, 2009, 145{174.

F. Harary, Graph Theory, Addison Wesley, Reading, 1972.

M. R. R. Kanna and B. N. Dharmendra, Minimum covering distance energy of a graph, Appl. Math.

Sci., 7 (111) (2013), 5525 - 5536.

S. Li, X. Li, H. Ma and I. Gutman,On triregular graphs whose energy exceeds the number of vertices,

Match Commun. Math. Comput.Chem., 64 (2010), 201{216.

Published

2022-06-22

How to Cite

MOHSEN, M. M. . . . ., & MAHDE, S. S. . (2022). SUM GEOMETRIC ARITHMETIC MEANS ENERGY OF GRAPHS. EPH - International Journal of Mathematics and Statistics, 8(1), 1–9. https://doi.org/10.53555/ephms.v8i1.1889